Glp1 log

Cycle help, AAS info, general information & exchange of opinions

Image
Post Reply
User avatar
DarrenW29
Posts: 202
Joined: Tue Mar 09, 2021 3:39 pm
Location: Edinburgh

Glp1 log

Post by DarrenW29 »

Hi everyone from what I understand I’m the only one prescribed glp1 and bodybuilding I’m currently using 7mg along with metformin 2500mg daily and would like to bring myself to log it on here and update with how I feel look side effects and research studies on as there is many and more to come as they are in trial now
Last edited by DarrenW29 on Tue Mar 09, 2021 4:10 pm, edited 1 time in total.


User avatar
DarrenW29
Posts: 202
Joined: Tue Mar 09, 2021 3:39 pm
Location: Edinburgh

Re: Glp1 log

Post by DarrenW29 »

Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion.

Background: Skeletal muscle atrophy is defined as a reduction of muscle mass caused by excessive protein degradation. However, the development of therapeutic interventions is still in an early stage. Although glucagon-like peptide-1 receptor (GLP-1R) agonists, such as exendin-4 (Ex-4) and dulaglutide, are widely used for the treatment of diabetes, their effects on muscle pathology are unknown. In this study, we investigated the therapeutic potential of GLP-1R agonist for muscle wasting and the mechanisms involved.

Methods: Mouse C2C12 myotubes were used to evaluate the in vitro effects of Ex-4 in the presence or absence of dexamethasone (Dex) on the regulation of the expression of muscle atrophic factors and the underlying mechanisms using various pharmacological inhibitors. In addition, we investigated the in vivo therapeutic effect of Ex-4 in a Dex-induced mouse muscle atrophy model (20 mg/kg/day i.p.) followed by injection of Ex-4 (100 ng/day i.p.) for 12 days and chronic kidney disease (CKD)-induced muscle atrophy model. Furthermore, we evaluated the effect of a long-acting GLP-1R agonist by treatment of dulaglutide (1 mg/kg/week s.c.) for 3 weeks, in DBA/2J-mdx mice, a Duchenne muscular dystrophy model.

Results: Ex-4 suppressed the expression of myostatin (MSTN) and muscle atrophic factors such as F-box only protein 32 (atrogin-1) and muscle RING-finger protein-1 (MuRF-1) in Dex-treated C2C12 myotubes. The suppression effect was via protein kinase A and protein kinase B signalling pathways through GLP-1R. In addition, Ex-4 treatment inhibited glucocorticoid receptor (GR) translocation by up-regulating the proteins of GR inhibitory complexes. In a Dex-induced muscle atrophy model, Ex-4 ameliorated muscle atrophy by suppressing muscle atrophic factors and enhancing myogenic factors (MyoG and MyoD), leading to increased muscle mass and function. In the CKD muscle atrophy model, Ex-4 also increased muscle mass, myofiber size, and muscle function. In addition, treatment with a long-acting GLP-1R agonist, dulaglutide, recovered muscle mass and function in DBA/2J-mdx mice.

Conclusions: GLP-1R agonists ameliorate muscle wasting by suppressing MSTN and muscle atrophic factors and enhancing myogenic factors through GLP-1R-mediated signalling pathways. These novel findings suggest that activating GLP-1R signalling may be useful for the treatment of atrophy-related muscular diseases.

Link https://pubmed.ncbi.nlm.nih.gov/31020810/
User avatar
Phill
Posts: 1753
Joined: Mon Mar 30, 2020 2:59 pm

Re: Glp1 log

Post by Phill »

DarrenW29 wrote: Tue Mar 09, 2021 4:09 pm Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion.

Background: Skeletal muscle atrophy is defined as a reduction of muscle mass caused by excessive protein degradation. However, the development of therapeutic interventions is still in an early stage. Although glucagon-like peptide-1 receptor (GLP-1R) agonists, such as exendin-4 (Ex-4) and dulaglutide, are widely used for the treatment of diabetes, their effects on muscle pathology are unknown. In this study, we investigated the therapeutic potential of GLP-1R agonist for muscle wasting and the mechanisms involved.

Methods: Mouse C2C12 myotubes were used to evaluate the in vitro effects of Ex-4 in the presence or absence of dexamethasone (Dex) on the regulation of the expression of muscle atrophic factors and the underlying mechanisms using various pharmacological inhibitors. In addition, we investigated the in vivo therapeutic effect of Ex-4 in a Dex-induced mouse muscle atrophy model (20 mg/kg/day i.p.) followed by injection of Ex-4 (100 ng/day i.p.) for 12 days and chronic kidney disease (CKD)-induced muscle atrophy model. Furthermore, we evaluated the effect of a long-acting GLP-1R agonist by treatment of dulaglutide (1 mg/kg/week s.c.) for 3 weeks, in DBA/2J-mdx mice, a Duchenne muscular dystrophy model.

Results: Ex-4 suppressed the expression of myostatin (MSTN) and muscle atrophic factors such as F-box only protein 32 (atrogin-1) and muscle RING-finger protein-1 (MuRF-1) in Dex-treated C2C12 myotubes. The suppression effect was via protein kinase A and protein kinase B signalling pathways through GLP-1R. In addition, Ex-4 treatment inhibited glucocorticoid receptor (GR) translocation by up-regulating the proteins of GR inhibitory complexes. In a Dex-induced muscle atrophy model, Ex-4 ameliorated muscle atrophy by suppressing muscle atrophic factors and enhancing myogenic factors (MyoG and MyoD), leading to increased muscle mass and function. In the CKD muscle atrophy model, Ex-4 also increased muscle mass, myofiber size, and muscle function. In addition, treatment with a long-acting GLP-1R agonist, dulaglutide, recovered muscle mass and function in DBA/2J-mdx mice.

Conclusions: GLP-1R agonists ameliorate muscle wasting by suppressing MSTN and muscle atrophic factors and enhancing myogenic factors through GLP-1R-mediated signalling pathways. These novel findings suggest that activating GLP-1R signalling may be useful for the treatment of atrophy-related muscular diseases.

Link https://pubmed.ncbi.nlm.nih.gov/31020810/
THANKS

where do you source this peptide from?
User avatar
DarrenW29
Posts: 202
Joined: Tue Mar 09, 2021 3:39 pm
Location: Edinburgh

Re: Glp1 log

Post by DarrenW29 »

Hey no problem at all bud thanks for looking I’m very grateful that I’m prescribed the oral version semaglutide from my doctor

But you can purchase it here but I don’t the the quality as I haven’t used it personally
Link https://www.peptidesciences.com/glp-1-g ... x-10-vials
MONSTRO
Posts: 1581
Joined: Thu May 07, 2020 11:42 pm

Re: Glp1 log

Post by MONSTRO »

Anyone here with experience and knowledge on this peptide? im always ready to learn more
User avatar
DarrenW29
Posts: 202
Joined: Tue Mar 09, 2021 3:39 pm
Location: Edinburgh

Re: Glp1 log

Post by DarrenW29 »

Glucagon-like peptide-1 (GLP-1) is an incretin hormone mainly secreted from intestinal L cells in response to nutrient ingestion. GLP-1 has beneficial effects for glucose homeostasis by stimulating insulin secretion from pancreatic beta-cells, delaying gastric emptying, decreasing plasma glucagon, reducing food intake, and stimulating glucose disposal. Therefore, GLP-1-based therapies such as GLP-1 receptor agonists and inhibitors of dipeptidyl peptidase-4, which is a GLP-1 inactivating enzyme, have been developed for treatment of type 2 diabetes. In addition to glucose-lowering effects, emerging data suggests that GLP-1-based therapies also show anti-inflammatory effects in chronic inflammatory diseases including type 1 and 2 diabetes, atherosclerosis, neurodegenerative disorders, nonalcoholic steatohepatitis, diabetic nephropathy, asthma, and psoriasis. This review outlines the anti-inflammatory actions of GLP-1-based therapies on diseases associated with chronic inflammation in vivo and in vitro, and their molecular mechanisms of anti-inflammatory action.
MONSTRO
Posts: 1581
Joined: Thu May 07, 2020 11:42 pm

Re: Glp1 log

Post by MONSTRO »

DarrenW29 wrote: Tue Mar 09, 2021 10:21 pm Glucagon-like peptide-1 (GLP-1) is an incretin hormone mainly secreted from intestinal L cells in response to nutrient ingestion. GLP-1 has beneficial effects for glucose homeostasis by stimulating insulin secretion from pancreatic beta-cells, delaying gastric emptying, decreasing plasma glucagon, reducing food intake, and stimulating glucose disposal. Therefore, GLP-1-based therapies such as GLP-1 receptor agonists and inhibitors of dipeptidyl peptidase-4, which is a GLP-1 inactivating enzyme, have been developed for treatment of type 2 diabetes. In addition to glucose-lowering effects, emerging data suggests that GLP-1-based therapies also show anti-inflammatory effects in chronic inflammatory diseases including type 1 and 2 diabetes, atherosclerosis, neurodegenerative disorders, nonalcoholic steatohepatitis, diabetic nephropathy, asthma, and psoriasis. This review outlines the anti-inflammatory actions of GLP-1-based therapies on diseases associated with chronic inflammation in vivo and in vitro, and their molecular mechanisms of anti-inflammatory action.
looks very good
Post Reply